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Quantification of Retinal Nerve 
Fibre Layer Thickness on Optical 
Coherence Tomography with a 
Deep Learning Segmentation-Free 
Approach
Eduardo B. Mariottoni1,2, Alessandro A. Jammal   1, Carla N. Urata1, Samuel I. Berchuck1,3, 
Atalie C. Thompson1, Tais Estrela1 & Felipe A. Medeiros1*

This study describes a segmentation-free deep learning (DL) algorithm for measuring retinal nerve fibre 
layer (RNFL) thickness on spectral-domain optical coherence tomography (SDOCT). The study included 
25,285 B-scans from 1,338 eyes of 706 subjects. Training was done to predict RNFL thickness from raw 
unsegmented scans using conventional RNFL thickness measurements from good quality images as 
targets, forcing the DL algorithm to learn its own representation of RNFL. The algorithm was tested 
in three different sets: (1) images without segmentation errors or artefacts, (2) low-quality images 
with segmentation errors, and (3) images with other artefacts. In test set 1, segmentation-free RNFL 
predictions were highly correlated with conventional RNFL thickness (r = 0.983, P < 0.001). In test set 
2, segmentation-free predictions had higher correlation with the best available estimate (tests with 
good quality taken in the same date) compared to those from the conventional algorithm (r = 0.972 
vs. r = 0.829, respectively; P < 0.001). Segmentation-free predictions were also better in test set 3 
(r = 0.940 vs. r = 0.640, P < 0.001). In conclusion, a novel segmentation-free algorithm to extract RNFL 
thickness performed similarly to the conventional method in good quality images and better in images 
with errors or other artefacts.

Glaucoma is a progressive optic neuropathy associated with characteristic changes to the optic disc and retinal 
nerve fibre layer (RNFL)1. In particular, RNFL assessment has been shown to be often the first detectable sign of 
glaucomatous damage2–4. RNFL defects may precede irreversible functional loss by several years and, therefore, 
assessment of the RNFL is an important tool for early diagnosis of the disease.

Spectral-domain optical coherence tomography (SDOCT) has allowed objective and quantitative evaluation 
of the RNFL. In order to provide quantitative measurements of the thicknesses of different retinal layers, cur-
rent SDOCT software applies automated algorithms to segment the layers of the retina, including the RNFL. 
However, the accuracy of segmentation algorithms can be undermined by artefacts and other segmentation 
errors, which may be present in 19.9% to 46.3% of SDODT images5,6. Careful review of SDOCT imaging for seg-
mentation errors is particularly crucial, since such errors can alter measurements and adversely impact clinical 
management7.

Although segmentation errors can be manually corrected, this is a time-consuming task and may be imprac-
tical in a busy clinical practice. However, the evolution of machine learning techniques and improved computa-
tional power have opened new approaches to expeditious quantification of structural damage on SDOCT images. 
In recent years, deep convolutional neural networks (CNN) have become the go-to algorithm for image classifi-
cation, achieving near-human-level performance8. Characterized by the presence of several (i.e. deep) convolu-
tional layers, CNN models extract low level features (e.g. corners, edges) in the initial layers that are hierarchically 
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combined over numerous subsequent layers to extract more complex features, such as shapes and objects. This 
characteristic is especially useful for computer vision tasks such as layer segmentation and object detection, usu-
ally presenting better performance over standard imaging processing. For example, Devalla et al. recently devel-
oped a deep learning (DL) algorithm that can segment optic nerve head tissues with high accuracy relative to 
manual segmentation9.

Although it is helpful to have better segmentation algorithms, it would not eliminate the need for checking 
for errors. We hypothesized that a DL approach would allow estimation of the thickness of the RNFL without 
requiring segmentation of the retinal layers whatsoever. In addition, we hypothesized that a segmentation-free 
approach would outperform conventional segmentation algorithms in extracting thickness information from 
relatively low-quality scans prone to segmentation errors.

The purpose of the present study was to develop a novel DL neural network algorithm that can predict the 
RNFL thickness from raw SDOCT B-scans without requiring segmentation, and to evaluate its performance in 
both high-quality images as well as low-quality images that contain segmentation errors or other artefacts.

Results
We developed a DL algorithm, trained on high-quality raw SDOCT B-scans, to predict the RNFL thickness val-
ues provided by the conventional software. We used a pre-trained residual neural network (ResNet34)10, further 
trained for fine-tuning. The training/validation dataset consisted of 13,262 images from 476 subjects and 897 
unique eyes, split at the patient level for training (80% of the sample) and validation (20%).

Performance of the algorithm was evaluated in images from 441 eyes of 230 subjects, distributed between 
three different Test Sets. The Test Set 1 contained 11,010 images that were of high quality, without any artefacts 
or segmentation errors, according to the reading centre. Test Set 2 had 237 images with segmentation errors and 
Test Set 3 had 776 low-quality images with other artefacts. No subject from the test sets was present in either the 
training or validation datasets. Table 1 describes the demographic and clinical characteristics of the eyes and 
subjects in the study.

Deep learning algorithm performance.  To evaluate the performance of the DL segmentation-free algo-
rithm, the estimates of RNFL thickness given by the model were compared with the RNFL thickness measure-
ments from the conventional segmentation-dependent algorithm in the images from Test Set 1 (high-quality 
images only). We found a strong correlation between DL segmentation-free RNFL estimates and the RNFL thick-
ness obtained from the conventional segmentation-dependent algorithm (Pearson’s r = 0.983; P < 0.001), with a 
mean absolute error (MAE) of 2.41 µm. The performance of the algorithm was similar between healthy, suspected 
of having glaucoma and glaucoma subjects (Supplementary Table S1). Other factors, such as gender and race, also 
did not influence the performance of the algorithm (Supplementary Table S2). The 95% limits of agreement were 
−6.79 to 4.97 µm. Figure 1 illustrates the relationship between the segmentation-free and conventional global 
RNFL thickness values and Fig. 2 shows the Bland-Altman plot of the agreement between the two estimates for 
Test Set 1.

For Test Sets 2 and 3, composed of images with low quality, the RNFL thickness from the conventional algo-
rithm could not be used as a reliable reference to evaluate the performance of the algorithm. We then used the 
average RNFL thickness of the scans with good quality of the same eye, taken at the same day, to provide the best 
available estimate (BAE; Fig. 3), used as a “ground-truth”. Both the DL segmentation-free predictions of RNFL 
thickness and the RNFL thickness measurements from the conventional segmentation-dependent algorithm were 
compared to the BAE.

In Test Set 2, segmentation-free RNFL thickness estimates showed a significantly stronger correlation with 
the BAE than those obtained with the conventional segmentation-dependent algorithm (r = 0.972 vs. r = 0.829, 
respectively; P < 0.001, William’s test of correlations). The MAE was 4.98 ± 5.85 µm for segmentation-free RNFL 

Training Validation Test

Subjects 380 96 230

Eyes 718 179 441

Heathy (%) 247 (34.4) 57 (31.8) 74 (16.8)

Glaucoma suspects (%) 371 (51.7) 96 (53.6) 282 (64.0)

Glaucoma (%) 100 (13.9) 26 (14.5) 85 (19.3)

Age, years ± SD 60.8 ± 16.9 64.9 ± 15.7 66.4 ± 13.1

Gender, female (%) 209 (56.03) 57 (60.64) 128 (55.65)

Race, African American (%) 70 (18.4) 17 (17.71) 63 (27.39)

Test Set 1 Test Set 2 Test Set 3

Images (%) 10,520 (41.7) 2,742 (10.8) 11,010 (43.5) 237 (0.94) 776 (3.07)

Signal strength ± SD 26.87 (4.61) 26.62 (4.43) 27.07 (4.68) 26.66 (4.26) 20.90 (9.69)

Description
Images without 
segmentation 
errors or artefacts

Images without 
segmentation 
errors or artefacts

Images without 
segmentation 
errors or artefacts

Images with 
segmentation errors

Images with 
other artefacts

Table 1.  Demographic and clinical characteristics of eyes and subjects in the study. SD = standard deviation; 
SDOCT = Spectral-Domain Optical Coherence Tomography; RNFL = Retinal Nerve Fibre Layer.
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estimates and 8.59 ± 11.26 µm for conventional RNFL thickness estimates (P < 0.001, random effects mixed 
model). Figure 4 shows the relationship between RNFL thickness estimates obtained by the segmentation-free 
and conventional algorithms and the BAE.

In Test Set 3, segmentation-free RNFL thickness estimates also showed a significantly stronger correlation with 
the BAE than those obtained with the conventional segmentation-dependent algorithm (r = 0.940 vs. r = 0.640, 
respectively; P < 0.001, William’s test of correlations). The MAE was 3.94 ± 4.46 µm for segmentation-free RNFL 
and 5.06 ± 16.19 µm for conventional RNFL (P = 0.026, random effects mixed model). Figure 5 shows the rela-
tionship between RNFL thickness estimates from the segmentation-free and conventional algorithms and the 
BAE. Figure 6 shows examples of scans where the algorithm performed well, with a prediction error lower than 
the error of the conventional algorithm when compared to the BAE, and Fig. 7 show examples of scans where the 
segmentation-free algorithm had a relatively high error. Tables 2 and 3 summarize the MAE and the correlation 
coefficients, respectively, in all three test sets.

Figure 1.  Scatterplot and histograms illustrating the relationship between the segmentation-free and 
conventional retinal nerve fibre layer (RNFL) thickness measurements from spectral domain optical coherence 
tomography (SDOCT) in good quality images from Test Set 1.

Figure 2.  Bland-Altman plot for agreement between the segmentation-free and conventional retinal nerve fibre 
layer (RNFL) thickness from spectral domain optical coherence tomography (SDOCT) in good quality images 
(Test Set 1).
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Discussion
In the present study, we developed a segmentation-free DL algorithm capable of estimating global RNFL thick-
ness from raw B-scans. The algorithm’s estimates of RNFL thickness were highly correlated with the RNFL 
thickness measurements provided by the conventional software in good quality images without segmentation 
errors or artefacts. In the two test sets that contained SDOCT images with segmentation errors or other artefacts, 
segmentation-free RNFL thickness estimates were much closer to the ground-truth estimates for RNFL thickness 
than those obtained by the conventional segmentation-dependent algorithm.

Our findings suggest that the segmentation-free DL algorithm can provide robust RNFL thickness estimates 
both in good quality images as well as in those that are prone to segmentation errors. Such algorithm could 
be helpful in clinical practice for assessing RNFL thickness without the need for segmentation, eliminating the 

Figure 3.  Example of B-scans taken at the same day for the same eye. Image (A) has an error in the delineation 
of the posterior boundary (blue line) of the retinal nerve fibre layer (RNFL), while images (B,C) are images with 
good quality and no segmentation errors. The best available estimate was 68 µm, calculated as the mean of the 
conventional RNFL thickness values from scans with good quality (scans B and C).

Figure 4.  Relationship between the best available estimate and either the segmentation-free retinal nerve fibre 
layer (RNFL) or conventional RNFL thickness measurements in spectral domain optical coherence tomography 
(SDOCT) images with segmentation errors (Test Set 2).
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time-consuming task of checking and manually correcting the segmentation of retinal layers. In addition, it could 
find use in providing a reference measurement to be used for flagging when estimates obtained using the conven-
tional segmentation seem too discrepant from those obtained without segmentation, a situation that would highly 
suggest presence of significant segmentation errors.

Artefacts and segmentation errors are highly prevalent on SDOCT and result in erroneous estimates of RNFL 
thickness5–7,11,12. While Asrani et al. identified artefacts in 19.9% of RNFL circle scans5, Liu et al. found at least 
one artefact in 46.3% of the 2,313 scans analysed in their study6. Mansberger and colleagues demonstrated that 
manual refinement changed the glaucoma classification of 8.5% of scans, 7.7% to a less severe and 0.8% to a more 
severe classification. Also, automated segmentation resulted in a global RNFL thickness that was 1.6 µm thinner 
than the “true” thickness as determined by manual refinement. The difference between the automated and “true” 
thickness increased with older age, thinner RNFL thickness, and lower scan quality7.

Many groups have tried to develop automated algorithms for retinal segmentation in macular13–15 and optic 
nerve head scans9,16. Devalla and colleagues developed a DL algorithm for retinal segmentation in optic nerve 
head scans9. The algorithm achieved good accuracy when compared to manual segmentation performed by 
two human graders. The resulting RNFL thickness provided by this algorithm had an error of 8.85 ± 3.40% and 
9.01 ± 4.20% when compared to each grader, while the graders had an error of 5.94 ± 2.30% between each other. 
Rather than trying to improve the segmentation process, we trained a DL algorithm to predict the global RNFL 
thickness from raw B-scan images without requiring segmentation. This was accomplished by providing reliable 
global RNFL thickness estimates from conventional segmentation software as the target value. This forced the DL 
algorithm to come up with its own way of finding how to estimate RNFL thickness. The idea was to avoid using 
prespecified thresholds or filters as usually performed in conventional segmentation algorithms. We hypothesized 
that such approach would provide a more robust way of estimating RNFL thickness. As expected, when applied to 
high-quality images from Test Set 1, the DL estimates of RNFL thickness were at least as good as those provided 
by the conventional segmentation algorithm, with a MAE of only 2.41 μm, which translates into an error percent-
age of only 3.0 ± 2.7%, lower than that achieved in Devalla’s study. Importantly, the MAE of the DL predictions 
did not exceed the instrument’s reported test-retest variability, which ranges from 4.02 to 5.30 µm according to 
the literature17–21.

The most important aspect of our work was to demonstrate that the segmentation-free DL algorithm would 
be able to provide reliable estimates of RNFL thickness in images where the conventional segmentation algorithm 
would fail. For this purpose, we identified samples of images (Test Sets 2 and 3) that contained segmentation 
errors or other artefacts. One important challenge was how to evaluate the performance of the DL estimates in 
comparison to the conventional algorithm. As the RNFL thicknesses provided by the conventional segmentation 
software in these cases would likely be inaccurate, they could not be used as a reliable value for true reference. 
Instead, the global RNFL thickness from scans with good quality taken from the same eye on the same day were 
averaged to provide a BAE, or “ground truth”. We found that the MAE in relation to the “ground truth” for the 
conventional method was more than 70% higher than that for the DL algorithm in images with segmentation 
errors, and almost 30% higher in images with other artefacts. Furthermore, the correlation with the BAE was 
higher for the segmentation-free DL RNFL thickness than for the RNFL thickness obtained from the conven-
tional segmentation software. These findings suggest that application of the DL algorithm may improve the utility 
of relatively low-quality scans acquired in routine clinical practice.

Figure 5.  Relationship between the best available estimate and either the segmentation-free or conventional 
retinal nerve fibre layer (RNFL) thickness measurements in spectral domain optical coherence tomography 
(SDOCT) images with other artefacts (Test Set 3).
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Figure 6.  Examples of scans where the algorithm had a low error compared to the best available estimate 
(BAE). (A) Example of scan with segmentation errors that led to an overestimation of the global retinal 
nerve fibre layer (RNFL) thickness by the conventional algorithm (89 µm) compared to the BAE (66 µm, 
right column). The segmentation-free algorithm, however, was able to estimate the global RNFL thickness 
(65.4 µm) with a low error (approximately 0.6 µm). (B) Example of scan with a segmentation error that led to 
an underestimation of the global RNFL thickness by the conventional algorithm (80 µm) compared to the best 
available estimate (92 µm, right column). While the conventional algorithm underestimated the RNFL thickness 
by 12 µm, the segmentation-free algorithm prediction (90.9 µm) had an error of approximately 1.1 µm.

Figure 7.  Examples of scans where the algorithm had a relatively high error compared to the best available 
estimate (BAE). (A) Example of scan with large segmentation errors and other artefacts. The segmentation-
free algorithm estimated a global retinal nerve fibre layer (RNFL) thickness value of 93.5 µm. The BAE of 
global RNFL thickness from the good quality scan (right column) was 82 µm. Of note, the segmentation-free 
prediction was still much closer to the BAE compared to the conventional RNFL thickness measurement 
(138 µm). (B) Example of scan with a smaller segmentation error. There was a difference of approximately 7 µm 
between the segmentation-free estimate (91.4 µm) and the BAE (84 µm, right column). However, such difference 
was still smaller than that the 17 um difference seen between the conventional algorithm and the BAE.

Number 
of images

MAE, µm

Segmentation-
free algorithm

Conventional 
algorithm P-value*

Test Set 1 11,010 2.41 — —

Test Set 2 237 4.98 8.60 <0.001

Test Set 3 776 3.94 5.06 0.026

Table 2.  Mean absolute error (MAE) of segmentation-free and conventional RNFL thickness in the three test 
sets in predicting the “ground truth” or best available RNFL thickness estimate. *P-value: random effects mixed 
models MAE = mean absolute error.
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This study has limitations. Since this was a supervised DL algorithm, it was trained to be only as good as the 
target values used in the training process. In our study, the target values were the RNFL thickness measurements 
in high-quality images according to the conventional SDOCT software. To guarantee proper target values for the 
training process, only high-quality images that had correctly positioned segmentation lines were used. Although 
RNFL thickness estimates provided by the conventional algorithm in these images are likely to be accurate, they 
can only be as good as the conventional segmentation approach allows. The estimates may still be influenced by 
blood vessels embedded in the RNFL, for example. Furthermore, the presence of segmentation lines allows the 
examiner to manually revise for errors, while in a segmentation-free approach this is not possible. As another 
limitation, in this proof-of-concept study the DL algorithm was trained to predict only the global RNFL thickness 
from the SDOCT B-scans. Future work should concentrate on obtaining segmentation-free RNFL estimates at 
each individual location on the B-scan or within predefined sectors. It will also be important in future studies to 
assess the performance of the DL segmentation-free algorithm in populations with other characteristics, such as 
eyes with high myopia. In addition, it will be important to assess how the RNFL thickness estimates perform in 
detecting glaucoma progression and estimating rates of change in a longitudinal setting.

In conclusion, we developed a novel segmentation-free DL algorithm that can predict accurate RNFL thick-
ness estimates from raw SDOCT B-scan images, without requiring segmentation of the retinal layers. The algo-
rithm provided reliable estimates both in high-quality images as well as in images prone to segmentation errors 
and other artefacts. Application of this algorithm in clinical practice may improve the utility of low-quality 
SDOCT scans and may help decrease errors in the interpretation of RNFL measurements.

Methods
The data in this study is a cross-sectional sample from the Duke Glaucoma Repository, a database of electronic 
medical and research records at the Vision, Imaging, and Performance Laboratory at Duke University. The 
Institutional Review Board approved this study, and a waiver of informed consent was granted due to the ret-
rospective nature of this work. All methods adhered to the tenets of the Declaration of Helsinki for research 
involving human subjects and the study was conducted in accordance with regulations of the Health Insurance 
Portability and Accountability Act (HIPAA).

The database included information from comprehensive ophthalmologic examinations collected during 
follow-up, such as medical history, visual acuity, intraocular pressure, slit-lamp biomicroscopy, gonioscopy, and 
dilated slit-lamp funduscopic examinations. In addition, mean deviation (MD) from standard automated perim-
etry (SAP) with the 24-2 Swedish interactive threshold algorithm (Carl Zeiss Meditec, Inc., Dublin, CA) was 
collected. Visual fields were retained if they met the following reliability criteria: fewer than 33% fixation losses 
and fewer than 15% false-positive errors. Spectralis SDOCT (Software version 5.4.7.0, Heidelberg Engineering, 
GmbH, Dossenheim, Germany) imaging was also performed.

Diagnosis of glaucoma was defined based on the presence of abnormal repeatable visual field loss in SAP (pat-
tern standard deviation <5% or glaucoma hemifield test outside normal limits) and signs of glaucomatous optic 
neuropathy as based on records of slit-lamp fundus examination. Glaucoma suspects were those with suspicious 
appearance of the optic disc on slit-lamp fundus examination, but without repeatable visual field loss in SAP. 
Healthy subjects were required to have a normal optic disc appearance on slit-lamp fundus examination in both 
eyes as well as no history of elevated intraocular pressure and normal SAP results.

Spectral-domain optical coherence tomography.  The Spectralis device uses a dual-beam SDOCT and 
a confocal laser-scanning ophthalmoscope that employs a super luminescent diode light with a wavelength of 
870 nm as well as an infrared scan to provide simultaneous images of ocular microstructures. For this study, a 
Spectralis RNFL circle scan was used to acquire 1,536 A-scan points within a 3.45-mm circle centred on the optic 
disc. Both corneal curvature and axial length measurements were entered into the instrument software to ensure 
appropriate scaling of all measurements. Also, the device’s eye-tracker was used to adjust for eye movements 
during image acquisition.

Segmentation lines were delineated by the conventional software in the Spectralis SDOCT, including the inner 
and outer RNFL boundaries, or the inner limiting membrane and the inner plexiform layer, respectively. A read-
ing centre assessed the quality of each scan by evaluating the following characteristics: signal strength, illumina-
tion, scan centration, clipped scans, segmentation errors, floaters, and other pathologies or other artefacts. Any 
misalignment was considered a segmentation error. The average peripapillary RNFL thickness corresponding to 
the 360-degree measurement was automatically calculated by the SDOCT software22.

Image processing and development of the deep learning algorithm.  A DL algorithm was trained 
to predict global RNFL thickness using raw B-scans (i.e., without automated delineation of the RNFL). By training 

Number 
of images

Correlation coefficients

Segmentation-
free algorithm

Conventional 
algorithm P-value*

Test Set 1 11,010 0.983 — —

Test Set 2 237 0.972 0.829 <0.001

Test Set 3 776 0.940 0.640 <0.001

Table 3.  Correlation coefficients of segmentation-free and conventional RNFL thickness with ground truth or 
best available estimates in the three test sets. *P-value: William’s test of correlations.
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the model with unsegmented images, the algorithm was forced to adjust its filters and combination of filters in 
a unique and unrestricted way, in order to identify all available features in the image that could be relevant to 
predict the RNFL thickness measurement. To ensure that the algorithm was trained using reliable RNFL meas-
urements, the training/validation dataset consisted only of high-quality raw B-scan images that contained no 
segmentation errors or artefacts, as determined by a reading centre. The dataset was randomly split at the patient 
level into training (80%) and validation (20%), thus preventing leakage from subject-related characteristics.

For training the algorithm, the images were down-sampled to a size of 496 × 496 pixels and pixel values were 
scaled to range from 0 to 1. The training data was augmented by performing the following image transformations: 
random lighting (i.e. subtle changes in image balance and contrast), random rotation (i.e. rotations of up to 10 
degrees in the image) and flipping the image horizontally. This process increased the heterogeneity of the images, 
thus reducing the possibility of overfitting and enabling the algorithm to learn the most relevant features in each 
image.

We used the Residual deep neural Network (ResNet34) architecture10, which had been previously trained on 
the ImageNet dataset23. The ResNet allows rapid training of deep CNNs through identity shortcut connections 
that skip one or more layers and decrease the vanishing gradient issue during training10. We adapted its architec-
ture to provide a continuous number by replacing the last layer of the network with a layer with a single linear 
output. Training was performed by first unfreezing the last 2 layers, and then subsequent model fine-tuning was 
performed with all of the layers unfrozen and using differential learning rates. The DL algorithm was trained 
with minibatch gradient descent of size 64 and Adam optimizer24,25. The best learning rates were found using the 
cyclical learning method with stochastic gradient descents with restarts.

After data processing and training were completed, the DL algorithm was used to predict the global RNFL 
thickness from raw SDOCT B-scan images without segmentation lines (i.e., segmentation-free RNFL) from 
images in the three test sets.

Performance assessment.  We assessed performance of the algorithm in three distinct test sets. No patient 
from the training or validation set was present in any of the test sets. Test Set 1 consisted of images without seg-
mentation errors or artefacts according to human gradings. Meanwhile, Test Sets 2 and 3 had images with errors; 
in particular, Test Set 2 included images with segmentation errors that could not be manually corrected, and 
Test Set 3 contained images with other artefacts, such as illumination or centration problems, clipped scans, and 
low-quality score. For each of the images in Test Sets 2 and 3, there was at least one accompanying image from the 
same eye and day with good quality. The RNFL thickness from good quality SDOCT scans provided a BAE that 
served as the “ground truth” for evaluation of the RNFL estimates from low-quality images. If more than one of 
these good quality images existed, then an average of the RNFL thicknesses was calculated as the BAE. Figure 1 
shows examples of scans with good and low-quality of the same eye, taken at the same day.

The study had two main hypotheses:
Hypothesis 1: In good-quality images, the segmentation-free algorithm would perform similarly to the con-

ventional segmentation in predicting RNFL thickness measurements. To test this hypothesis, RNFL thickness 
measurements were extracted from raw B scans using the DL segmentation-free algorithm in Test Set 1, which 
contained only good quality images. MAE and Pearson’s correlation coefficients between the segmentation-free 
and conventional segmentation algorithm were calculated, as well as a Bland-Altman analysis modified to 
account for repeated measures26,27.

Hypothesis 2: In low-quality images or images with segmentation error, the DL segmentation-free algorithm 
would provide RNFL thickness measurements that would be closer to the “ground-truth” than those provided by 
the conventional segmentation algorithm. To test this hypothesis, we used Test Sets 2 and 3. The “ground-truth” 
was the BAE described above. MAE and Pearson’s correlation coefficients were calculated between the BAE and 
the estimates derived from the segmentation-free and conventional algorithm. MAEs for the conventional and 
segmentation-free algorithms were compared using a random effects mixed model, that accounted for variability 
across patients and eyes28. Pearson correlation coefficients were compared using a hypothesis test for comparing 
two correlations with a common variable29.

All statistical analyses were performed using Stata (version 15, StataCorp LP, College Station, TX). The alpha 
level (type I error) was set at 0.05.
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